国家自然科学基金委员会化学科学部

化学科学部基金申请 新代码体系的编制

2017年12月01日,清华大学

报告纲要

- > 国际化学基金分类调研
- > 学科资助代码系统编制
- > 新旧代码系统对照说明

化学的核心问题

实现化学合成、过程及功能的精准控制和规律认知

国际化学基金分类调研

(1) 美国科学基金会化学学科

- 1) 化学催化 (Chemical Catalysis);
- 2) 化学合成 (Chemical Synthesis);
- 3) 化学测量与成像(Chemical Measurement and Imaging);
- 4) 化学结构、动力学与机理 (Chemical Structure, Dynamics and Mechanism);
- 5) 化学理论、模型与计算方法 (Chemical Theory, Models and Computation Methods);
- 6) 生命过程中的化学 (Chemistry of Life Processes);
- 7) 环境化学科学 (Environmental Chemical Sciences);
- 8) 大分子、超分子与纳米化学(Macromolecular, Supramolecular and Nanochemistry)。

(2) 英国工程与物理研究会化学学科

- 1)分析化学(Analytical Chemistry);
- 2) 生物相关化学(Biological Related Chemistry);
- 3) 催化与表面化学(Catalysis and Surfaces);
- 4) 材料相关化学(Materials Related Chemistry);
- 5)物理化学(Physical Chemistry);
- 6) 合成化学(Synthetic Chemistry)。

(3) 德国基金会化学学科

- 1)分析化学:分析化学及方法建立,分析化学及方法建立;
- 2)生物与食品化学:生物与仿生化学,生物与食品化学,食品化学;
- 3)固体与表面化学:固体与表面化学,固体与表面物理化学及材料性质,固体与表面化学及材料合成,理论与模型研究
- 4)分子化学:分子化学,无机分子化学,有机分子化学;
- 5)物理与理论化学:物理与理论化学,基本理论化学,分子、 界面和液体的物理化学(谱学、动力学方面)
- 6)聚合物化学:聚合物的实验与理论物理,聚合物研究,聚合物材料,聚合物的制备与物理化学

(4.1) 法国国家科研中心化学部

Section 11 : Systèmes et matériaux supra et macromoléculaires : élaboration, propriétés, fonctions

超分子/大分子体系和材料:制备,性质,功能

Section 12: Architectures moléculaires: synthèses,

mécanismes et propriétés

分子结构:合成,机理和性质

Section 13 : Chimie physique, théorique et analytique

物理化学,理论和分析

Section 14 : Chimie de coordination, catalyse, interfaces et proceeds

配位化学,催化,界面与过程

Section 15: Chimie des matériaux, nanomatériaux et proceeds 材料化学, 纳米材料和过程

Section 16 : Chimie du vivant et pour le vivant : conception et propriétés de molécules d'intérêt biologique

生命与生活中的化学:生物分子的概念与性质

(4.2) 法国科研基金化学部

- 1) 化学与健康;
- 2)生命化学过程;
- 3)材料与纳米材料;
- 4)聚合物与软物质体系;
- 5)催化和表面反应性;
- 6)分析化学;
- 7)可持续发展的化学;
- 8) 化学建模;
- 9)冶金学。

(4.3) 法国国家科研中心化学部

```
1)超分子合成(包括性质、功能、工程);
2)分子构筑(合成、机理、性质);
3)物理化学(分子、理论);
4)配位化学(界面过程);
5)材料化学;
6)纳米材料与生命化学;
7)生命功能分子与结构
```

(5) 荷兰科学研究组织资助方向

i) 生命化学 (Chemistry of Life); ii) 材料化学 (Chemistry of Materials); iii) 化学转化 (Chemical Conversion)。

```
1)分析化学 (Analytical Chemistry);
                                8) 软物质(Soft Matter),即液体与界
2)生物分子化学(Biomolecular
                                面 (Liquids and Interfaces);
Chemistry);
                                9)大分子(Macromolecules);
                                10)核酸研究(Nucleic Acids
3)催化(Catalysis);
4)材料化学与结构(Chemistry and
                                Research);
Structure of Materials );
                                11)药物化学(Pharmacochemistry);
5)配位化学与均相催化(Coordination
                                12) 过程技术 (Process Technology);
Chemistry and Homogeneous
                                13)蛋白质研究 (Protein Research);
Catalysis);
                                14) 谱学与理论 (Spectroscopy and
6)设计与合成(Design and Synthesis);
                                Theory);
7)磷脂与生物膜(Lipids and
                                15)结构与反应性(Structure and
Biomembranes);
                                Reactivity).
```

(7) 日本学术振兴会资助方向

- 1. 基础化学:1)物理化学,2)有机化学,3)无机化学;
- 2. 复合化学:1)分析化学,2)合成化学;3)高分子化学,4)功能物质化学,5)环境相关化学,6)生物相关化学;
- 3. 材料化学:1)功能材料,2)有机工业材料,3) 无机工业材料,4)高分子材料。

(8) 其它国家和地区情况

以下国家/地区没有详细情况或者没有细致分类:

俄罗斯、加拿大、挪威、瑞典、丹麦、芬兰、新加

坡、新西兰、南非、智利、巴西、台湾、香港

国际机构的化学学科基金资助趋势

调研结论

- 按研究方向的分类资助乃大多数 国家和地区的基金管理趋势
- > 科研基金不等同于学科建设

学科资助代码系统编制

学科资助新代码的制订原则

指导原则:基金委化学学科"十三五"规划

理性分析:原代码系统的利弊权衡

传承创新:兼顾我国国情和国际发展趋势

包容性:涵盖学科全部研究领域和方向

开放性: 宜宽不宜窄

科学性:依照学科特点,分类简洁明了

国际 化:符合国际学术表达惯例

未来发展:为学科的新生长点预留空间

大类划分的学科思考

B01 合成化学

→ 化学核心

B02 催化与表界面化学

B03 化学理论与机制

B04 化学测量学

B05 材料化学与能源化学

B06 环境化学

B07 化学生物学

B08 化学工程与工业化学

化学基础

交叉融合

→ 工业应用

B01 合成化学

合成化学是研究物质转化和合成方法的科学,涵盖 无机、有机、高分子等物质的合成;合成化学通过 分子创造和物质转化过程中选择性的控制,逐步实 现具有特定性质和功能的新物质的精准化制备和应 用:合成化学积极拓展与相关学科的交叉融合,推 动相关领域重大科学问题的解决,促进国家经济和 社会发展。

B01 合成化学

B0101 元素化学

B0102 无机合成

B0103 有机合成

B0104 高分子合成

B0105 配位合成化学

B0106 超分子化学与组装

B0107 绿色合成

→ 元素

分子内键

分子间作用

→绿色化学

B02 催化与表界面化学

催化与表界面化学旨在研究表界面的结构与性质, 揭示物质在表界面发生的物理与化学转化过程的基本规律。催化与表界面化学涵盖催化化学、表面化学、胶体与界面化学和电化学,这些体系涉及固体表面、气-固界面、气-液界面、液-液界面、液-固界面、固-固界面以及气-液-固多相界面。

B02 催化与表界面化学

B0201 催化化学

→ 气-固界面

B0202 表面化学

→ 真空-固界面

B0203 胶体与界面化学 -> 液-液界面

B0204 电化学

→ 液-固界面

B03 化学理论与机制

化学理论与机制旨在建立和发展新的化学理论和实验方法,揭示化学反应及其相关过程的机制和基本规律。化学理论与机制主要包括理论与计算化学、化学热力学、化学动态学、结构化学、光化学和光谱学、化学反应机制、高分子物理与高分子物理化学,以及化学信息学。

B03 化学理论与机制

B0301 理论与计算化学

→ 理论

B0302 化学热力学

→ 热力学

B0303 化学动态学

→ 动力学

B0304 结构化学

→ 结构

B0305 光化学与光谱学

→ 光化学

B0306 化学反应机制

→ 机理

B0307 高分子物理与高分子物理化学

→ 高分子理论

B0308 化学信息学

→ 化学大数据

B04 化学测量学

化学测量学旨在发展化学相关的测量策略、原理、 方法与技术:研制各类分析仪器、装置及相关软件, 以精准获取物质组成、分布、结构与性质的时空变 化规律:突出新方法学,注重学科交叉、方法集成 及信号关联:重视基于新原理的仪器创制以及关键 部件性能提升;发挥其在国家安全、国家重大需求 及经济社会发展中的重要作用。

B04 化学测量学

B0401 分离分析

→ 样品处理

B0402 电分析化学

→ 电化分析

B0403 谱学方法与理论 → 谱学分析

B0404 化学与生物传感

→ 生物分析

B0405 化学成像

→ 成像分析

B0406 化学分析与应用

→ 分析应用

B0407 仪器创制

→ 仪器研制

B05 材料化学与能源化学

材料化学是研究材料的设计、制备、结构、性能及应用的科学。利用化学原理与方法,在原子和分子水平上设计和制备新材料;通过功能传递、集成与协同实现材料性能调控,探索其在能源、健康、环境和信息等领域的应用。

能源化学是利用化学原理与方法,研究能源转化、储存、传输与利用的科学。研究新型能量转换和储存机制;设计新材料、构筑新器件、建立新方法,实现能源的绿色高效利用。

B05 材料化学与能源化学

B0501 无机与纳米材料化学

B0502 有机高分子功能材料化学

B0503 有机高分子结构材料化学

B0504 复合与杂化材料化学

B0505 智能与仿生材料化学

B0506 含能材料化学

B0507 碳基能源化学

B0508 电化学能源化学

B0509 可再生与可持续能源化学

B0510 能量转换材料

材料化学

能源化学

→ 能量转换

B06 环境化学

环境化学是研究化学物质在环境介质中的存在、特 性、行为、效应及其污染控制原理和方法的科学。 涵盖环境污染化学、污染控制与修复、环境毒理与 健康、理论环境化学、放射化学/辐射化学、安全 与防护化学等:研究内容从微观机理到宏观规律不 断拓展,创新性、系统性、实用性显著提升,在推 动学科发展和解决国家重大环境问题中发挥着越来 越重要的作用。

B06 环境化学

B0601 环境污染化学

→ 污染分析

B0602 污染控制与修复

→ 污染控制

B0603 环境毒理与健康

→生态健康

B0604 理论环境化学

→ 环境理论

B0605 放射化学与辐射化学

→ 放射辐射

B0606 安全与防护化学

→ 公共安全

B07 化学生物学

化学生物学利用外源的化学物质,通过介入式化学 方法或途径,在分子层面上对生命体系进行精准修 饰或调控。创造新反应技术和新分子工具,为生命 科学的研究提供新的思路和理念;彰显其在研究生 命过程(或功能)可视、可控、可创造的进程中的 重要作用:关注生命科学中重要分子事件的过程和 动态规律,发挥化学的特点和创造性。

B07 化学生物学

B0701 分子探针

→ 生物小分子

B0702 生物分子的化学生物学 -> 生物大分子

B0703 化学遗传学

→ 化学与遗传

B0704 生物合成化学

→ 生化合成

B0705 药物化学生物学

→ 药物化学

B0706 化学生物学理论与技术 -> 方法与技术

B08 化学工程与工业化学

化学工程与工业化学是研究物质转化过程中物质运 动、传递、反应及其相互关系的科学。认识物质转 化过程中传递现象和规律及其对反应本身和目标产 品性能的影响;研究绿色高效地进行物质转化的工 艺、流程和设备;建立工业化(规模)的设计、放 大和调控的理论和方法:关注化学与化工的交叉融 合,实现新理论、新概念、新方法的工业应用。

B08 化学工程与工业化学

B0801 化工热力学

B0802 传递过程

B0803 反应工程

B0804 分离工程

B0805 化工装备与过程强化

B0806 系统过程与化工安全

B0807 生物化工与轻化工

B0808 精细化工与绿色制造

B0809 材料化工与产品工程

B0810 能源化工

B0811 资源与环境化工

→ 化工基础

传递、反 应与分离

装备安全

化工生产

资源能源

新旧代码系统对照说明

新、旧代码的差异变动

B01 合成化学

B02 催化与表界面化学

B03 化学理论与机制

B04 化学测量学

B05 材料化学与能源化学

B06 环境化学

B07 化学生物学

B08 化学工程与工业化学

新设立

→ 新扩展

→ 新设立

→ 新扩展

→ 新设立

→ 新扩展

新设立方向举例之一

B05 材料化学与能源化学

B0501 无机与纳米材料化学 B0508 电化学能源化学

B050801 超级电容器 B050101 晶态固体材料

B050802 燃料电池 B050102 非晶态材料

B050103 无机膜材料 B050803 化学电源

B050104 低维纳米材料

B050105 团簇材料

B050106 分子基材料

B050804 太阳能电池

B050805 其他新型电池

B050806 电池回收化学

新设立方向举例之二

B07 化学生物学

B0703 化学遗传学

B070301 正向化学遗传学

B070302 反向化学遗传学

B070303 化学表观遗传学

B070304 化学表观转录组学

B0704 生物合成化学

B070401 酶化学机制

B070402 生物合成策略与机制

B070403 活性与结构导向的生

物合成

B070404 合成生物学

新设立方向举例之三

B0201	催化化学	新增内容	
B020101	催化基础与理论	模型催化	
		催化机理	
		理论计算	
		催化热力学	
		催化动力学	
B020102	催化剂设计和制备	活性中心的调控	
		单原子催化剂	
		多级孔催化材料	
		新型分子筛	
		多功能催化剂	

新扩展方向举例之一

B06 环境化学

B0605 放射化学与辐射化学

B060501 环境放射化学

B060502 放射核素分析

B060503 环境辐射化学

B060504 放射计算化学

B060505 放射性废物处理与 处置

B0606 安全与防护化学

B060601 化学品安全与防护

B060602 生物安全与防护

B060603 辐射安全与防护

B060604 危险品检测、处理

与处置

新扩展方向举例之二

B08 化学工程与工业化学

B0801 化工热力学

B0802 传递过程

B080101 化工基础数据与模型 B080201 分子混合与传递

B080102 纳微尺度热力学 B080202 化工流体力学

B080103 表界面结构与现象 B080203 传质与传热

B080104 分子模拟与计算 B080204 界面与限域传递

B080105 平衡与非平衡热力学 B080205 非常规条件下的 传递过程

新代码—原代码的对照举例

原——对多—新

	B0103	有机合成	B050104	低维纳米材料
催	B010303	金属催化合成反应	B050105	团簇材料
	B0201	催化化学	B0507	碳基能源化学
	B020102	催化剂设计和制备	B050701	天然气活化与转化
化	B020103	多相催化	B050702	煤转化化学基础
刘	B020104	均相催化	B050703	石油资源化学
リッ 生川	B020105	团簇仿生催化	B050704	二氧化碳化学转化
制备	B020106	光催化	B0803	反应工程
Ħ	B0501	无机与纳米材料化学	B080301	介尺度时空动态结构
	B050101	晶态固体材料	B0805	化工装备与过程强化
	B050103	无机膜材料	B080504	新材料过程强化

新代码—原代码的对照举例

新代码	新条目	原代码	原条目
B0101	元素化学		
B010101	主族元素化学	B0110	同位素化学
		B010202	主族元素化学
		B020301	有机磷化学
■新—	一对多一原	B020302	有机硅化学
		B020303	有机硼化学
		B020304	有机氟化学
B010102	过渡金属元素化学	B010203	过渡金属化学
		B010204	丰产元素与多
			酸化学
B010103	稀土与锕系元素化学	B010201	稀土化学

原代码—新代码的对照举例

原代码	原条目	新代码	新条目
B05	分析化学	B04	化学测量学
B0501	色谱分析	B040103	色谱分析
B050101	•	_	_
B050102	液相色谱	原一多	对——新
B050103	离子色谱与薄层色谱		
B050104	毛细管电泳及电色谱	B040104	电泳分析
B050105	微流控系统与芯片分析	B040105	微纳流控
B050106	色谱柱固定相与填料	B040102	分离介质

项目申请时的新代码运用

"总有一款适合你"

进 追